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Abstract Surface soil moisture is one of the crucial
variables in hydrological processes, which influences the
exchange of water and energy fluxes at the land surface/
atmosphere interface. Accurate estimate of the spatial and
temporal variations of soil moisture is critical for numerous
environmental studies. Recent technological advances in
satellite remote sensing have shown that soil moisture can
be measured by a variety of remote sensing techniques,
each with its own strengths and weaknesses. This paper
presents a comprehensive review of the progress in remote
sensing of soil moisture, with focus on technique
approaches for soil moisture estimation from optical,
thermal, passive microwave, and active microwave
measurements. The physical principles and the status of
current retrieval methods are summarized. Limitations
existing in current soil moisture estimation algorithms and
key issues that have to be addressed in the near future are
also discussed.

Keywords surface soil moisture, monitoring, satellite,
remote sensing

1 Introduction

Surface soil moisture is the water that is in the upper 10 cm
of soil, whereas root zone soil moisture is the water that is
available to plants, which is generally considered to be in
the upper 200 cm of soil (http://www.ghcc.msfc.nasa.gov/
landprocess/lp_home.html). Compared with the total
amount of water on the global scale, this thin layer of
soil water may seem insignificant; nonetheless, it is of
fundamental importance to many hydrological, biological,

and biogeochemical processes. The role of soil moisture in
the top 1 to 2 m of the Earth’s surface has been widely
recognized as a key variable in numerous environmental
studies (Walker, 1999), including meteorology, hydrology,
agriculture, and climate change (Topp et al., 1980; Jackson
et al., 1987; Fast and McCorcle, 1991; Engman, 1992;
Entekhabi et al., 1993; Betts et al., 1994; Saha, 1995; Su et
al., 1995;). Therefore, it is important to accurately monitor
and estimate spatial and temporal variations of soil
moisture.
Direct observations of soil moisture are currently

restricted to discrete measurements at specific locations,
and such point-based measurements do not represent the
spatial distribution because soil moisture is highly variable
both spatially and temporally (Engman, 1991; Wood et al.,
1992) and are therefore inadequate to carry out regional
and global studies (http://www.geotimes.org/may02/
WebExtra0503.html). Technological advances in satellite
remote sensing have offered a variety of techniques for
measuring soil moisture across a wide area continuously
over time (Engman, 1990). Researches in soil moisture
remote sensing began in the mid 1970's shortly after the
surge in satellite development. Subsequent research effort
has occurred along many diverse paths, spanning most of
the electromagnetic spectrum from optical to microwave
region. Numerous researchers have shown that near-
surface soil moisture content can be measured by optical
and thermal infrared remote sensing, as well as passive and
active microwave remote sensing techniques (Walker,
1999). The primary difference among these techniques are
the wavelength region of the electromagnetic spectrum
used, the source of the electromagnetic energy (Walker,
1999), the response measured by the sensor, and the
physical relation between the response and the soil
moisture content. Table 1 summarizes the relative merits
of the different remote sensing techniques for surface soil
moisture estumation.
As remote sensors do not measure soil moisture content
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directly, mathematical models that describe the connection
between the measured signal and soil moisture content
must be derived (de Troch et al., 1996). Usually, the
forward model simulates the instrument’s response on the
basis of relevant land surface parameters (Walker, 1999). A
method is then developed for inverting the model by
minimizing the residual error between the model simulated
and sensor-measured values.
This review presents a comprehensive overview of the

commonly used methodologies for soil moisture estima-
tion, including their physical principles, advantages, and
constraints from optical, thermal infrared, passive micro-
wave, and active microwave measurements. Since the
basic ideas inherent in the model inversion are similar no
matter which spectrum domain the sensor uses, the
overview of the model inversion approaches is only
given in the passive microwave section.

2 Optical remote sensing for soil moisture
estimation

Remote sensing of soil moisture content using the solar
domain with wavelengths between 0.4 and 2.5 μm
measures the reflected radiation of the sun from the Earth’s
surface, known as reflectance (Sadeghi et al., 1984).
Compared with microwave and thermal infrared domains
that have been most commonly used for soil moisture
estimation (Price, 1980; Wuthrich, 1994, Engman and
Chauhan 1995, Jackson et al., 1995), little attention has
been paid to the use of the solar domain (Liu et al., 2003).
However, many investigations have shown that the solar
domain also provides the capability for soil moisture
estimation (Dalal and Henry, 1986; Schlesinger et al.,
1996; Sommer et al., 1998; Leone and Sommer, 2000).
The effect of soil moisture on its reflectance has long

been recognized by many scientists. Early in 1925,
Angstrom found a decrease in reflectance when soil
moisture increases in his measurements (Angstrom,

1925). Thereafter, familiar darkening of soil on wetting
has been reported by other researchers (Curcio and Petty,
1951; Bowers and Hanks, 1965; Stoner and Baumgardner,
1980; Ishida et al., 1991). Several empirical approaches
have been proposed to describe the connection between
soil surface reflectance and moisture contents. Bowers and
Smith (1972) observed a linear relationship between the
absorption in a water absorption band and soil water
content. A factor of about 2 for all soils except sands was
employed by Jackson et al. (1976) to account for the
reflectance reduction due to the increase of soil moisture
content. By using absorbance values measured in the near-
infrared, Dalal and Henry (1986) estimated soil moisture
with accurate results over a range of soil samples. These
empirical approaches, however, provide only a poor
indication of soil moisture content, since the spectral
characteristic of a soil also depends on numerous other
factors, such as mineral composition, organic matter, soil
texture, and surface roughness (Asner, 1998; Ben-Dor et
al., 1999), causing wide variations when they are applied to
other localities outside the calibration conditions.
Lobell and Asner (2002) developed a physical model to

explain the soil reflectance variations due to moisture
change based on their analysis of the reflectance for four
different soils at various moisture contents. The soil
reflectance at a particular wavelength is modeled as an
exponential function of the volumetric soil moisture. Such
nonlinear equations are representative of the physical
processes underlying the relationship, i.e., Beer’s Law for
absorption in random homogenous media (Liu et al.,
2002). Since experiments performed by Lobell and Asner
involved measuring soil reflectance under various moisture
conditions, their model captures both the absorption and
scattering effects of soil moisture (Dasgupta, 2007).
Similar exponential models were proposed by Liu et al.
(2002) to obtain a robust estimate of soil moisture.
Liu et al. (2003) analyzed 18 different soils that

represent a large range of permanent soil characteristics
and investigated the potential of estimating soil moisture

Table 1 Summary of remote sensing techniques for near-surface soil moisture estimation (after Engman, 1991; Moran et al., 2004).

spectrum domain properties observed advantages limitations

optical soil reflection fine spatial resolution
broad coverage

limited surface penetration
cloud contamination
many other noise sources

thermal infrared surface temperature fine spatial resolution
broad coverage
physical well understood

limited surface penetration
cloud contamination
perturbed by meteorological
conditions and vegetation

microwave passive brightness temperature
dielectric properties
soil temperature

low atmospheric noise
moderate surface penetration
physical well understood

low spatial resolution
perturbed by surface
roughness and vegetation

active backscatter coefficient
dielectric properties

low atmospheric noise
moderate surface penetration
high spatial resolution
physical well understood

limited swath width
perturbed by surface
roughness and vegetation
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from reflectance measurements in the solar domain.
Different approaches were compared, including relative
reflectance approach, which normalized the reflectance by
the reflectance of the corresponding soil under dry
conditions, and derivative/difference approaches, which
were based on either reflectance derivatives or absorbance
derivatives. The derivative/difference of absorbance
approach revealed the highest overall performance and
provided the best estimates for soil moisture, as well as
minimized the effects of confounding factors.
Most recently, Wang and Qu (2007) designed the

normalized multiband drought index (NMDI) for remotely
sensing both soil and vegetation water content from space
based on the soil and vegetation spectral signatures.
Similar to traditional normalized difference water index
(NDWI), NMDI uses the channel centered at 0.86 μm,
which is insensitive to leaf water content changes as the
reference; however, instead of using a single liquid water
absorption band, it uses the difference between two liquid
water absorption bands (1.64 and 2.13 μm), as the soil and
vegetation water sensitive band. Strong differences
between these two water absorption bands in response to
soil and leaf water content change give this combination
potential to estimate the water content for both soil and
vegetations. The successful application of NMDI for forest
fire detection demonstrated its quick response to the
moisture changes through the fire (Wang et al., 2008).
Abovementioned approaches explored a new direction

in the use of remote sensing science toward soil moisture
estimation and demonstrated the potential for monitoring
moisture conditions from solar domain. However, the
shallow soil penetration, cloud contamination, and the fact
that the contribution of other factors that influence the soil
reflectance may not be effectively minimized, limits the
utility of solar reflectance measurements for soil moisture
content determination.

3 Thermal infrared remote sensing for soil
moisture estimation

Thermal infrared remote sensing measures the thermal
emission of the Earth with an electromagnetic wavelength
region between 3.5 and 14 μm (Curran, 1985). The
estimation of surface soil moisture using remotely sensed
thermal wavebands primarily relies on the use of soil
surface temperature measurements, either singly like the
thermal inertia method or in combination with vegetation
indexes as the temperature/vegetation index method.

3.1 Thermal inertia method

Variations in soil moisture have a strong influence on the
thermal properties of the soil, which is an intrinsic factor of
soil surface temperature change. The amplitude of the
diurnal range of soil surface temperature has been found to

be highly correlated with the surface soil moisture content
(Schmugge, 1978; Friedl and Davis, 1994). Areas having
higher soil moisture content are cooler during the day and
warmer at night (van de Griend and Engman, 1985).
The thermal properties that control the soil daily range of

temperature are the soil thermal conductivity l and the soil
heat capacity CT. The soil thermal inertia TI can be
expressed as:

TI ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðlCT Þ

p
, (1)

where TI is a body property of materials, which describes
their resistance to temperature variations (Verstraeten et al.,
2006). When soil water content increases, TI proportion-
ally increases as well, thereby reducing the diurnal
temperature fluctuation range.
A simple surrogate of TI is the apparent thermal inertia

(ATI), which can be derived directly from multispectral
remote sensing imagery (Tramutoli et al., 2000; Claps and
Laguardia, 2004; Verstraeten et al., 2006), by measure-
ments of spectral surface albedo α and the diurnal
temperature range ΔT:

ATI ¼ 1 – α
ΔT

: (2)

Then, the volumetric soil moisture Ws can be calculated
using the linear empirical equation:

Ws ¼ a0⋅ATI þ a1, (3)

where a0 and a1 are empirical parameters.
The thermal inertia method, simple and easy to use, has

clear physical meaning and can achieve high accuracy in
estimating soil moisture conditions. However, it is only
applicable in the regions with no or little vegetation cover
(Xue and Ni, 2006).

3.2 Temperature/vegetation index method

Vegetation and land surface temperature (LST) have a
complicated dependence on soil moisture. An earlier
description of the vegetation and atmosphere relationship
is from the vegetation index/temperature (VIT) trapezoid
(Moran et al., 1994). Careful analyses of data by Carlson et
al. (1994) and Gillies et al. (1997) showed that there is a
unique relationship sometimes referred to as the “Universal
Triangle” among soil moisture Ws ,the normalized
difference vegetation index (NDVI), and the LST for a
given region. The results were later confirmed by
theoretical studies using a soil-vegetation-atmosphere-
transfer (SVAT) model, which was first named by Gillies
and Carlson (1995) and designed to describe the basic
evaporation processes at the surface, together with the
water partitioning between vegetation transpiration, drai-
nage, surface runoff, and soil moisture variations.
Figure 1 represents a schematic description of the

relationship referred to as the “Universal Triangle.” The
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abscissa and the ordinate are scaled temperature and
NDVI, respectively, such that:

T� ¼ T – To
Ts – To

, (4)

NDVI� ¼ NDVI –NDVIo
NDVIs –NDVIo

, (5)

where, T and NDVI are observed LST and NDVI,
respectively, and the subscripts o and s stand for minimum
and maximum values.
Carlson et al. (1994) found that the relationship between

soil moisture, NDVI*, and T* can be expressed through a
regression formula such as:

Ws ¼
Xi¼n

i¼0

Xj¼n

j¼0

aijNDVI
�ðiÞT�ðjÞ, (6)

where aij are regression coefficients.
In terms of a second order polynomial, the above

equation can be expanded as (Chauhan, 2003):

Ws ¼ a00þa10NDVI
� þ a20NDVI

�2

þa01T
� þ a02T

�2

þa11NDVI
�T� þ a22NDVI

�2T�2

þa12NDVI
�T�2 þ a21NDVI

�2T�:

(7)

Such an approach can be applied in a combination of
ground observations and satellite remote sensing measure-
ments. Wang et al. (2007) demonstrated the potential of
soil moisture estimation by combining in-situ soil moisture
measurements and MODIS land parameters (LST and
NDVI) to achieve daily soil moisture products with 1 km
resolution.
Numerous variations have been given to this triangle

technique including the temperature-vegetation contextual

approach (TVX) (Prihodko and Goward, 1997; Czaj-
kowski et al., 2000), surface temperature-vegetation index
(T/NDVI) space (Lambin and Ehrlich, 1996), temperature-
vegetation dryness index (TVDI) (Sandholt et al., 2002),
moisture index (Dupigny-Giroux and Lewis, 1999), and
the VI/Trad relation (Kustas et al., 2003).
Approaches based on either the surface temperature or

the complimentary temperature-vegetation index are
powerful and have clear physical meaning but have
limitations in addition to those common to all optical
techniques such as shallow soil penetration and cloud
contamination (Moran et al., 2004). They are often
empirical and depend on local meteorological conditions,
such as wind speed, air temperature, and humidity
(Nemani et al., 1993), and thus vary across time and land
cover types (Smith and Choudhury, 1991; Czajkowski et
al., 2000).

4 Microwave remote sensing for soil
moisture estimation

Microwave remote sensing provides a unique capability
for soil moisture estimation by measuring the electro-
magnetic radiation in the microwave region between 0.5
and 100 cm. The fundamental basis of microwave remote
sensing for soil moisture is the large contrast between the
dielectric properties of water (~80) and soil particles (< 4).
As the moisture increases, the dielectric constant of the
soil-water mixture increases, and this change is detectable
by microwave sensors (Njoku and Kong, 1977; Dobson et
al., 1985). Both passive and active microwave remote
sensing techniques have demonstrated the most promising
ability for globally monitoring soil moisture variations.

4.1 Passive microwave remote sensing

Previous research has shown that passive microwave
remote sensors can be used to monitor surface soil
moisture over land surfaces (Eagleman and Lin, 1976;
Ulaby et al., 1986; Schmugge and Jackson, 1994; Jackson
et al., 1995; Wigneron et al., 2004). These sensors measure
the intensity of microwave emission from the soil, which is
proportional to the brightness temperature, a product of the
surface temperature and emissivity. This observed emis-
sion is related to its moisture content because of the large
differences in the dielectric constant of dry soil and water
(Moran et al., 2004). Current and near future spaceborne
passive microwave sensors for soil moisture measurements
include the Scanning Multichannel Microwave Radio-
meter (SMMR) on Nimbus-7, the Special Sensor Micro-
wave/Imager (SSM/I) on Defense Meteorological Satellite
Program (DMSP), the Tropical Rainfall Measuring Mis-
sion Microwave Imager (TRMM-TMI), the Advanced
Microwave Scanning Radiometer-EOS (AMSR-E) on
Aqua, and the upcoming soil moisture and ocean salinity

Fig. 1 Universal triangle relationship between soil moisture,
temperature, and NDVI (Chauhan, 2003)
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(SMOS) mission by the European Space Agency (ESA),
NASA hydrospheric states (HYDROS) mission, and Soil
Moisture Active and Passive (SMAP) mission.
The surface emission model is one of the essential

components in the applications of microwave remote
sensing of soil moisture in the bare or vegetated surfaces
(Wang et al., 1983; Mo and Schmugge, 1987; Jackson and
Schmugge, 1991; Jackson et al., 1999; Njoku and Li, 1999;
Prigent et al., 2000; Wigneron et al., 2001; Shi et al., 2002;
Njoku et al., 2003). A number of models have been
developed for the computation of microwave emission
from land surface (Ulaby et al., 1986; Wang and
Choudhury, 1995; Njoku and Entekhabi, 1996), with
different approximations and parameterizations of the key
processes in radiative transfer equation, depending on the
specific application and frequency range.

4.1.1 Surface emission model

4.1.1.1 Soil emission model

The most commonly used model that describes the bare
soil surface emission as a function of the surface roughness
and dielectric properties is the so-called Q/H model
(Choudhury et al., 1979; Wang and Choudhury, 1981;
Shi et al., 2003):

Re
p ¼ 1 – εp ¼ ð1 –QÞ⋅rp þ Q⋅rq

� �
⋅H , (8)

where Re
p and εp are the surface effective reflectivity and

emissivity at polarization of p, respectively. The subscript
p or q describes the polarization state v or h; r is the surface
reflectivity for flat surface. The roughness parameter Q
describes the energy emitted in orthogonal polarization due
to the surface roughness effects. The roughness parameter
H is a measure of the surface roughness effect on surface
effective reflectivity. The surface roughness parameters Q
and H are usually determined empirically from the
experimental data (Wang et al., 1983; Mo and Schmugge,
1987; Shi et al., 2005).
The other semiempirical models are basically developed

by modifying the Q/Hmodel. They all assumed Q with the
different functional forms ofH parameter (Shi et al., 2005).

4.1.1.2 Emission model for vegetation-covered areas

When a vegetation layer is present over the soil surface, it
attenuates soil emission and adds its own contribution to
the emitted radiation. These effects can be well approxi-
mated by a simple radiative transfer model, commonly
referred to as the τ~ω model (Wigneron et al., 2003). This
model is based on two parameters, the optical depth τ and
the single scattering albedo ω, which are used to
parameterize, respectively, the vegetation attenuation
properties and the scattering effects within the canopy
layer (Mo et al., 1982; Wigneron et al., 2003). Using the

τ~ω model, the brightness temperature, TBp, of a soil and
vegetation layer is the sum of three terms: the canopy-
attenuated soil emission, the direct vegetation emission,
and the vegetation emission reflected by the soil and
attenuated by the canopy:

TBp ¼Ts⋅εp⋅exp – τcð Þ þ Tc⋅ 1 –ωð Þ⋅ 1 – expð – τcÞ½ �
þ Tc⋅ 1 – εp

� �
⋅ 1 –ωð Þ⋅ 1 – expð – τcÞ½ �⋅exp – τcð Þ,

(9)

where Ts and Tc are the physical temperatures (K) of the
soil and vegetation canopy, εp is the surface emissivity, τc is
the vegetation optical depth, and ω is the single scattering
albedo.
Several studies found that τc can be estimated through

its relationship to the total vegetation water content
Wc (kg/m

2) given by (Jackson and Schmugge, 1991):

τc ¼ b⋅Wc=cos�, (10)

where b is a coefficient that depends on vegetation type
(Jackson and Schmugge, 1991; van de Griend and
Wigneron, 2004), and θ is the incident angle.
The τ-ω model can be applied successfully if other

factors that influence the brightness temperature, such as
instrument configuration and target characteristics, are
invariant for a particular locality (Schmugge et al., 1980;
Schmugge, 1983; Engman and Chauhan, 1995). The
spatial variability of the soil texture and temperature,
surface roughness, and vegetation, from one locality to
another and even within a single instrument footprint,
complicates the application of this technique (http://
weather.msfc.nasa.gov/omega/scienceAssessment.html).
More recently, polarization indices have been proposed

to monitor soil moisture and vegetation development, as
the microwave signatures of soil and vegetation exhibit
distinct response to polarization effects. The most common
index is the microwave polarization difference index
(MPDI) (Owe et al., 2001; Meesters et al., 2005) defined
as:

MPDI ¼ ðTBV – TBHÞ=ðTBV þ TBHÞ, (11)

where TBV and TBH are brightness temperature at V and H
polarization, respectively. As the MPDI is a normalized
calculation of brightness temperature, it primarily depends
on the polarization difference, thereby minimizing the
variable surface temperature effects.

4.1.2 Soil moisture retrieval methods

Many approaches have been developed to retrieve soil
moisture from microwave radiometric measurements,
which can be grouped into two main categories: statistical
techniques and forward model inversion.
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4.1.2.1 Statistical approaches

Statistical approaches are generally based on the regression
analysis between measured brightness temperature and
surface soil moisture. For each group of spaceborne
observations, regression relationships are established
between measured brightness temperature and physical
parameters. The regression relations are then analyzed in
terms of physical variables and parameters, which can be
estimated from ancillary data (Wigneron et al., 2003).
Statistical approaches are simple and efficient, which

have demonstrated the capabilities of passive microwave
remote sensing techniques for monitoring soil moisture.
However, these methods are “these methods site-specific,”
as they can only be used for the similar conditions during
which they were calibrated, while are not applicable for
monitoring events or trends out of the domain of
calibration.

4.1.2.2 Forward model inversion

In this approach, a radiative transfer model is first selected
to simulate the microwave radiometric measurements on
the basis of relevant land surface parameters, and a method
is then developed for inverting the model by minimizing
the residual error between the model-simulated and
microwave-measured brightness temperature values.
Corresponding to different kinds of surface emission

models, numerous inversion methods have been devel-
oped, among which, the statistical inversion approach is
the most common algorithm.
Most of the studies using semiempirical and empirical

forward models are based on statistical regression analysis.
For example, the simple linear relationship between soil
moisture and emissivity, εp= a0 – a1$ws, proves to be valid
under a large range conditions for bare soils, provided that
sufficient ground data are available to calibrate the
coefficients a0 and a1. Thus, soil moisture can be retrieved
by inverting the above linear equation (Wigneron et al.,
2003).
Over vegetation-covered areas, the statistical techniques

for soil moisture retrieval differ primarily in the way of
approximating the vegetation effects on the relationship
between brightness temperature and soil moisture. Usually,
the surface soil moisture is statistically related to a
combination of microwave emissivity and vegetation
indices, which are used to correct for the soil roughness
and vegetation effects (Wigneron et al., 2003). In the
statistical retrieval approaches developed by Jackson et al.
(1982) and Theis et al. (1984), the vegetation indices, such
as MPDI and NDVI, have been used in the regression
function to relate the microwave emissivity to soil
moisture. Based on this principle, Choudhury et al.
(1987) and Choudhury and Golus (1988) carried out
retrievals of soil wetness from spaceborne radiometer
observations (Wigneron et al., 2003).

Compared with conventional statistical algorithms,
relatively satisfactory retrieval results have been found
for statistical approaches based on forward model inver-
sion by accounting for the vegetation effects (Pulliainen et
al., 1993).
Soil moisture retrieval from space-based passive micro-

wave instruments has solid physical basis, as well as the
advantage of all-weather observations and better vegeta-
tion penetration especially at the lower frequencies
between 1 and 3 GHz (L band) (Njoku and Li, 1999;
Njoku et al., 2002). However, the use of passive
microwave measurements for the global estimation is
limited for many reasons. First, the spatial resolution
is inherently coarse, which is usually in the range of
10–20 km. Further, the available wavelengths from
satellites do not provide adequate soil moisture sensitivity
for all types and levels of vegetation cover. Current
algorithms are mainly valid for weakly vegetated regions
and relatively flat surface. Lower frequencies in the L band
are recognized to be of the greatest utility in measuring soil
moisture content because they provide adequate sensitivity
to soil moisture for most ranges of vegetation cover (Njoku
et al., 2002). However, long wavelengths require large
antennas in orbit, which amounts to a challenge for
engineering within operational cost constraints (Zhan et
al., 2002; Crosson et al., 2005).

4.2 Active microwave sensing

Great progress has been made in mapping regional soil
moisture with active microwave sensors. In active
microwave methods, a microwave pulse is sent and
received. The power of the received signal is compared
with which was sent to determine the backsca-ttering
coefficient of the surface (http://envisat.esa.int/env-
school_2006/lectures/su2.pdf), which has been shown to
be sensitive to soil moisture. The most common imaging
active microwave configuration is the synthetic aperture
radar (SAR), which transmits a series of pulses as the radar
antenna traverses the scene (Moran et al., 2004). These
SAR systems can provide resolutions in the order of tens of
meters over a swath width of 50–500 km. Currently, there
are five operational SAR satellite systems with frequencies
suitable for soil moisture retrieval: ESA ERS-1/2 C-band
SAR, ESA ENVISAT (ERS-3) C-band ASAR (Advanced
SAR), the Canadian C-band RADARSAT-1/2, the Japa-
nese L-band ALOS-PALSAR (Advanced Land Observing
Satellite- Phased Array type L-band SAR, JERS-2), as well
as the recent successful launches of German X-band Terra-
SAT.
For radar, the total copolarized backscatter στpp from the

surface is the sum of three components:

�τ
pp ¼ �s

pp⋅expð – 2⋅τcÞ þ �vol
pp þ �intpp , (12)

the first term is the soil surface backscatterer, σspp, modified
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by the two-way attenuation through a vegetation layer of
opacity τc. The second and third terms represent the
backscatter from the vegetation volume σvolpp and the
interaction between the vegetation and soil surface σintpp,
respectively (Ulaby et al., 1996). For bare or surfaces with
little vegetation, the σspp contribution dominates the
received signal and is influenced primarily by the soil
moisture and surface roughness. For densely vegetated
areas, the backscatter is determined largely by volumetric
scattering from the vegetation canopy.
Many theoretical, empirical, and semiempirical models

have been developed since the beginning of SAR studies to
relate the SAR backscatter coefficient to soil moisture
through the contrast of the dielectric constants of bare soil
and water (Fung et al., 1992; Oh et al., 1992; Dubois et al.,
1995; Shi et al., 1995).

4.2.1 Theoretical approaches

Some effort has been made to describe the microwave
backscattering from surfaces with known roughness
characteristics by means of different theoretical models
on a strictly theoretical basis. Theoretical approaches are
usually derived from the diffraction theory of electro-
magnetic waves and have different ranges of validity,
depending on the wavelength and the range of surface
roughness (Fung et al., 1992; D'Ursoa and Minacapillib,
2006).
Most of the current frequently used surface scattering

models originated from the small perturbation method
(SPM) (Rice, 1951) and the Kirchhoff model (Beckmann
and Spizzichino, 1963), which are both restricted to a
limited range of roughness conditions (http://envisat.esa.
int/envschool_2006/lectures/su2.pdf). In the integral equa-
tion model (IEM) (Fung et al., 1992; Fung, 1994), these
two theories are combined to a method applicable to a
wider range of roughness conditions than that from
conventional models such as physical optical model and
geometric optical model (Fung, 1994; Shi et al., 2005).
Recently, Chen et al. (2003) extended the original IEM and
developed the advanced integral equation model (AIEM).
Theoretical models can predict reasonably well the

general trend of backscattering coefficient in response to
changes in roughness or soil moisture content (Dubois and
van Zyl, 1994). However, their complexity and the
restrictive requirement for the parameterization of the
vegetation and soil surface layer hamper their effective
applicability for the soil moisture retrieval (Ulaby et al.,
1986).

4.2.2 Empirical approaches

Empirical models are generally derived from experimental
measurements to establish useful empirical relationships
for inversion of soil moisture from backscattering

observations (Walker et al., 2004). The main advantage
of empirical backscattering models over theoretical
backscattering models is that many natural surfaces do not
fall into the validity regions of the theoretical back-
scattering models, and even when they do, the available
backscattering models fail to provide results in good
agreement with experimental observations (Oh et al., 1992;
Walker et al., 2004).
An example of an empirical method has been proposed

by Shoshany et al. (2000), who used the normalized
backscatter moisture index (NBMI) as a basis for their soil
moisture retrieval algorithm:

NBMI ¼ �0
t1 –�

0
t2

�0t1 þ �0
t2

, (13)

Ws ¼ ar⋅NBMIþ br, (14)

where σ0t1 and σ0t2 are the backscatter coefficients at
different time steps and ar and br are empirical parameters
fitted from in situ soil moisture observations. Rather than
finding an exact relationship between active microwave
observations and surface soil moisture content, this
approach estimates soil moisture through change detection
(Engman, 1990; Kite and Pietroniro, 1996) by using the
normalized calculation of NBMI, which minimizes the
impact of other factors such as soil texture, surface
roughness, and vegetation because they usually change
slowly with time (Engman and Chauhan, 1995). Thus, the
change in the target is assumed from a change in soil
moisture content (Engman, 1990).
Other empirical models based on the use of horizontal

and vertical polarization diversity have also been devel-
oped for inversion purposes to retrieve both the roughness
and moisture parameters (Wang and Zhang, 2005).
Empirical methods yield often accurate soil moisture

results but may not be applicable for datasets that exceed
the calibration conditions (Chen et al., 1995; Dubois et al.,
1995), since a great number of experimental measurements
is a must to derive general statistical laws and establish a
useful empirical relationship for inversion of soil moisture
from backscattering observations (Oh et al., 1992), while
current empirical models generally are derived from a
limited number of observations and therefore are site-
specific.

4.2.3 Semiempirical approaches

Alternatively, semi-empirical models of backscattering,
which represent an acceptable compromise between
theoretical and empirical approaches, have been developed
based on a theoretical foundation with model parameters
derived from experimental data.
Among the semi-empirical models used for soil moisture

retrieval with polarimetric radar data, the first was that of

Lingli WANG et al. Satellite remote sensing applications for surface soil moisture monitoring 243



Oh et al. (1992). Oh et al. found that the depolarization
ratio (σ0vh/σ

0
vv) is very sensitive to soil moisture and

developed the semi-empirical model based on empirical
fittings of scatterometer measurements over bare soil
surfaces with different roughness conditions. In the semi-
empirical method proposed by Dubois et al. (1995), the
copolarization backscattering coefficients σ0vv and σ0hh are
expressed as nonlinear functions of the surface dielectric
constant, the incidence angle, the wavelength and the root
mean square of surface height.
The main advantage of these backscattering models is

that they are not expected to have the site-specific
problems commonly associated with empirical models
(Walker et al., 2004). In most cases, these types of models
are suited for bare soil surface conditions rather than
vegetated surfaces.

4.3 Active and passive microwave sensing

Recent advances in remote sensing have demonstrated the
ability to measure the spatial variation of surface soil
moisture under a variety of topographic and land cover
conditions using both active and passive microwave
measurements, each with its own strength and weakness.
Active sensors, although having the capability to provide
high spatial resolution in the order of tens of meters, have a
poor resolution in time with repeat time excess of 1 month.
On the other hand, the spaceborne passive systems can
provide spatial resolutions only in the order of tens of
kilometers but with a higher temporal resolution.
Despite the disadvantages of SAR or passive-based soil

moisture retrieval, the ALOS-PALSAR and the proposed
SMOS and SMAP mission offer the opportunity of
retrieving soil moisture in a combined passive/active
microwave approach, which is expected to increase the
accuracy of the retrievals and can yield high-resolution soil
moisture products (http://envisat.esa.int/envschool_2006/
lectures/su2.pdf).

5 Summary and discussion

This paper outlines the basic principles of the satellite-
based techniques for soil moisture estimation and reviews
briefly the status of current retrieval methods. There are a
fairly wide variety of approaches, which have been used to
retrieve soil moisture from optical, thermal infrared,
passive microwave and active microwave satellite mea-
surements.
The basis of the optical technique for soil moisture

estimation rests on the connection between soil surface
reflectance and moisture contents. Several empirical
approaches and physical models have been proposed to
describe the soil moisture effects on surface reflectance
with satisfactory results. However, the fact that the
contribution of other factors that influence the soil

reflectance may not be effectively minimized limits the
utility of solar reflectance measurements for soil moisture
content determination.
Approaches based on either the surface temperature or

the complimentary temperature/vegetation index are
powerful and have clear physical principles but have
limitations in addition to those common to all optical
techniques. Such approaches are often empirical and thus
vary across time and land cover types and generally cannot
be extrapolated from one location to another.
Microwave remote sensing is the most effective

technique for soil moisture estimation, with advantages
for all-weather observations and solid physics. Soil
moisture can be estimated using passive radiometer or
active radar measurements. Both radiometer brightness
temperature and radar backscattering measurements have
been shown to be sensitive to soil moisture. Passive
microwave has more potential for large-scale soil moisture
monitoring but has a low spatial resolution. Active
microwave can provide high spatial resolution but has
low revisit frequency and is more sensitive to soil
roughness and vegetation.
For future soil moisture retrieval algorithms, it would be

more beneficial to synergistically integrate the spaceborne
measurements from multiple sensors, physically based
model predictions, as well as in situ observations. The
priority areas for future research should also include the
approaches for mapping soil moisture in densely vegetated
areas.
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